813 research outputs found

    Effects of environmental conditions on the micro-mechanical properties of formulated waterborne coatings

    Get PDF
    Waterborne colloidal polymer coatings are widely used in architectural and agricultural applications where they are subject to challenging environments, such as extremes of temperatures and relative humidities (RH). This research investigates the effects of adding two common co-formulants, poly(acrylic acid) (PAA) and xanthan gum (XG), to waterborne polymer composite coatings in these environments. The mechanical properties of the resulting coatings are of particular interest. Hardness, creep and tack properties of thick (similar to 400 mu m) formulated model coatings were characterized using a micro-indentation technique operating in a single cycle within a bespoke environmental chamber. Measurements were made at three temperatures (16, 20 and 30 degrees C), which span the glass transition temperature (T-g) of the acrylic copolymer binder, and over three RH values of 10%, 43%, and 90%. The creep data were analysed using the Burgers model to extract characteristic viscoelastic properties. The tack was found by recording the force when withdrawing the probe from the sample and using it to obtain nominal stress (knowing the indentation depth and probe geometry) during the indenter's withdrawal and hence the work of adhesion (W-Adh) to detach from the coating. Tack adhesion is completely lost below the binder's T-g but increases when the ambient temperature increases. In formulated coatings, both the tack and creep deformation increase as the relative humidity increases, and this trend is observed at each temperature. There is no evidence from thermal analysis for plasticization of the acrylic polymer by moisture sorption, but the two co-formulants are hydrophilic. The observed softening of the coatings at high RH can be attributed to water sorption in the components. The presence of glassy PAA has the effect of raising the hardness of glassy coatings, but only at low RH when there is no plasticization by water. The addition of hydrophilic XG surprisingly reduces tack adhesion while also raising the viscosity of the coating. These findings will inform the formulation of waterborne colloidal coatings to function in a range of environments.work was funded by EPSRC (Grant EP/L016788/1) through the Doctoral Training Centre in Micro- and NanoMaterials and Technology (MiNMaT). We benefited from useful discussions with Dr. Marco Ram- aioli (INRAE, AgroParisTech - Center de Massy) and Dr. Nicholas Ballard (University of the Basque Country). We thank Violeta Doukova and Dave Jones (University of Surrey) for laboratory assistance and Dr. Agata Gajewicz-Jaromin for performing DSC and TGA analyses. We also thank Dr. James Adams (Cubica Technology) for his assistance in writing data analysis scripts. We thank Richard Turner (Acal BFI UK Ltd.) for the relative humidity and temperature probes, and for his assistance with their setup

    Finitely presented wreath products and double coset decompositions

    Get PDF
    We characterize which permutational wreath products W^(X)\rtimes G are finitely presented. This occurs if and only if G and W are finitely presented, G acts on X with finitely generated stabilizers, and with finitely many orbits on the cartesian square X^2. On the one hand, this extends a result of G. Baumslag about standard wreath products; on the other hand, this provides nontrivial examples of finitely presented groups. For instance, we obtain two quasi-isometric finitely presented groups, one of which is torsion-free and the other has an infinite torsion subgroup. Motivated by the characterization above, we discuss the following question: which finitely generated groups can have a finitely generated subgroup with finitely many double cosets? The discussion involves properties related to the structure of maximal subgroups, and to the profinite topology.Comment: 21 pages; no figure. To appear in Geom. Dedicat

    Experiments on the twisted vortex state in superfluid 3He-B

    Full text link
    We have performed measurements and numerical simulations on a bundle of vortex lines which is expanding along a rotating column of initially vortex-free 3He-B. Expanding vortices form a propagating front: Within the front the superfluid is involved in rotation and behind the front the twisted vortex state forms, which eventually relaxes to the equilibrium vortex state. We have measured the magnitude of the twist and its relaxation rate as function of temperature above 0.3Tc. We also demonstrate that the integrity of the propagating vortex front results from axial superfluid flow, induced by the twist.Comment: prepared for proceedings of the QFS2007 symposium in Kaza

    Absence of a dose-rate effect in the transformation of C3H 10T1/2 cells by α-particles

    Get PDF
    The findings of Hill et al. (1984) on the greatly enhanced transformation frequencies at very low dose rates of fission neutrons induced us to perform an analogous study with -particles at comparable dose rates. Transformation frequencies were determined with γ-rays at high dose rate (0·5 Gy/min), and with -particles at high (0·2 Gy/min) and at low dose rates (0·83-2·5 mGy/min) in the C3H 10T1/2 cell system. α-particles were substantially more effective than γ-rays, both for cell inactivation and for neoplastic transformation at high and low dose rates. The relative biological effectiveness (RBE) for cell inactivation and for neoplastic transformation was of similar magnitude, and ranged from about 3 at an -particle dose of 2 Gy to values of the order of 10 at 0·25 Gy. In contrast to the experiments of Hill et al. (1984) with fission neutrons, no increased transformation frequencies were observed when the -particle dose was protracted over several hours

    The silting of Lake Carthage, Carthage, Illinois

    Get PDF
    Cover title.Bibliographical footnotes.Enumeration continues through succeeding title

    Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors

    Full text link
    A theory for longitudinal (T1) and transverse (T2) electron spin coherence times in zincblende semiconductor quantum wells is developed based on a non-perturbative nanostructure model solved in a fourteen-band restricted basis set. Distinctly different dependences of coherence times on mobility, quantization energy, and temperature are found from previous calculations. Quantitative agreement between our calculations and measurements is found for GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    Reddening law and interstellar dust properties along Magellanic sight-lines

    Full text link
    This study establishes that SMC, LMC and Milky Way extinction curves obey the same extinction law which depends on the 2200A bump size and one parameter, and generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests that extinction in all three galaxies is of the same nature. The role of linear reddening laws over all the visible/UV wavelength range, particularly important in the SMC but also present in the LMC and in the Milky Way, is also highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages, 12 figures. Some figures are colour plot
    corecore